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Chapter 2

Nature of Solar Radiation

Solar energy comes to Earth in the form of radiation, or sunlight, with spectral compo-
nents mostly in the visible, near infrared, and near ultraviolet. To study the properties
of sunlight, we need to consider and understand it from two points of view: as an
electromagnetic wave and as a flow of photons. The first point of view is essential
for all solar thermal applications and the antireflection coatings for solar cells. The
second point of view is essential with regard to solar cells and solar photochemistry.
The unification of the two points of view is represented by quantum electrodynamics,
one of the most fruitful and matured fields in modern physics. Here, for simplicity, we
will present an elementary treatment of these two points of view separately.

2.1 Light as Electromagnetic Waves

Up to the middle of the nineteenth century, electromagnetic phenomena and light have
been considered as totally independent entities. In 1865, in a monumental paper A Dy-
namic Theory of the Electromagnetic Field, James Clerk Maxwell (Fig 2.1) proposed
that light is an electromagnetic wave [58]. In that paper, he developed a complete set of

Figure 2.1 James Clerk Maxwell. Scot-

tish physicist (1831–1879), one of the most in-

fluential physicists along with Isaac Newton

and Albert Einstein. He developed a set of

equations describing electromagnetism, known

as the Maxwell’s equations. In 1865, based on

those equations, he predicted the existence of

electromagnetic waves and proposed that light

is an electromagnetic wave [58]. He also pio-

neered the kinetic theory of gases, and created

a science fiction character Maxwell’s demon.

Portrait courtesy of Smithsonian Museum.
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42 � Nature of Solar Radiation

equations explaining electromagnetic phenomena, now known as Maxwell’s equations.
Based on those equations, he predicted the existence of electromagnetic waves, propa-
gating in free space with a speed that equals exactly the speed of light, which was then
verified experimentally by Heinrich Hertz. Maxwell’s bold postulation that light is an
electromagnetic wave has since become one of the cornerstones of physics.

2.1.1 Maxwell’s Equations

In vacuum, or free space, Maxwell’s equations are

∇ ·E =
ρ

ε0
, (2.1)

∇ ·B = 0, (2.2)

∇×E = −∂B

∂t
, (2.3)

∇×B = ε0μ0
∂E

∂t
+ μ0 J. (2.4)

Electric current cannot exist in free space. For linear, uniform, isotropic materials, the
current density J is determined by the electric field intensity E through Ohm’s law,

J = σE. (2.5)

The names, meanings, and units of the physical quantities in these equations are
listed in Table 2.1. For example, the electric constant has an intuitive meaning as
follows. A capacitor made of two parallel conducting plates with area A and distance d
has a capacitance C = ε0A/d in farads. Similarly, the electric constant has an intuitive
meaning as follows. An inductor made of a long solenoid of N loops with cross-sectional
area A and length l has an inductance L = μ0N

2A/l in henrys.

Table 2.1: Quantities in Maxwell’s Equations

Symbol Name Unit Meaning or Value
E Electric field intensity V/m

B Magnetic field intensity T (tesla) N/A·m
ρ Electric charge density C/m3

J Electric current density A/m2

ε0 Electric constant F/m 8.85× 10−12 F/m

(permittivity of free space)

μ0 Magnetic constant H/m 4π × 10−7 H/m

(permeability of free space)

σ Conductivity (Ω ·m)−1
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2.1 Light as Electromagnetic Waves � 43

2.1.2 Vector Potential

To treat the electromagnetic field in space, a convenient method is to use the vector
potential. From Eq. 2.2, it is possible to construct a vector field A which satisfies

B = ∇×A. (2.6)

Then, Eq. 2.2 is automatically satisfied. Substituting Eq. 2.6 into Eq. 2.3, one obtains

∇×E = − ∂

∂t
∇×B. (2.7)

For any function φ(r), ∇× [∇φ(r)] = 0, it is possible to set up the vector potential A
such that

E = −∂A

∂t
−∇φ, (2.8)

where φ is the electrostatic potential arising from the charges. The choice of the vector
potential is not unique. By adding a gradient of an arbitrary function to it, values of
the electric field and magnetic field do not change. This is called the gauge invariance
of the vector potential. It is possible to define a vector potential which satisfies the
condition

∇ ·A = 0. (2.9)

Equation 2.9 is called the Coulomb gauge, which is the most convenient gauge to treat
nonrelativistic problems of an atomic system and an independent electromagnetic wave.
In fact, using Eq. 2.9 and the first Maxwell equation Eq. 2.1, one obtains

∇2φ = − ρ

ε0
, (2.10)

which means that the scalar potential is generated by the static charges only. It is
thus convenient for treating the problems of interactions between the radiation field
and atomic systems. For details of the gauge problem, see, for example, The Quantum
Theory of Radiation by Walter Heitler [37].

2.1.3 Electromagnetic Waves

In this section, we study the electromagnetic waves in free space, that is, where the
electric charge ρ and current J are zero. Substituting Eqs 2.6 and 2.8 into Eq. 2.4, we
have

∇×∇×A+ ε0μ0
∂2A

∂t2
= 0. (2.11)

Using the identity
∇×∇×A ≡ ∇(∇ ·A)−∇2A (2.12)

and Eq. 2.9, Eq. 2.11 becomes

∇2A− ε0μ0
∂2A

∂t2
= 0. (2.13)
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44 � Nature of Solar Radiation

Introducing

c =
1√
ε0μ0

, (2.14)

Eq. 2.13 becomes

∇2A− 1

c2
∂2A

∂t2
= 0, (2.15)

which is a wave equation with velocity c. Because of Eqs. 2.6 and 2.8, the electric field
intensity and the magnetic field intensity also satisfy the same wave equation,

∇2E− 1

c2
∂2E

∂t2
= 0 (2.16)

and

∇2B− 1

c2
∂2B

∂t2
= 0, (2.17)

According to values of ε0 and μ0 coming from electromagnetic measurements in 1860s,
the velocity of electromagnetic waves should be 3.1 × 108 m/s. On the other hand,
experimental values of the speed of light at that time were 2.98× 108–3.15× 108 m/s.
The difference was within experimental error. Maxwell proposed thusly [58]:

The agreement of the results seems to show that light and magnetism are
affections of the same substance, and that light is an electromagnetic dis-
turbance propagated through the field according to electromagnetic laws.

Maxwell’s theory of electromagnetic waves was experimentally verified by Heinrich
Hertz in 1865. From recent electrical measurements, one finds 1/

√
ε0μ0 = 2.998 ×

108m/s, which is exactly the speed of light in a vacuum, c.

2.1.4 Plane Waves

An electromagnetic wave with circular frequency ω in space is defined as

A(x , y , z , t) = A(x , y , z ) e−iωt . (2.18)

To study the properties of electromagnetic waves, we consider the case that the
wave propagates in one direction, say z. In this case, the field intensities only depend
on z. Equation 2.15 becomes

d2A

dz2
+

ω2

c2
A = 0. (2.19)

The general solution is
A = A0e

i(kz z−ωt). (2.20)

where A0 is a constant, and the z-component of the wavevector kz is defined as

kz =
ω

c
. (2.21)
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2.1 Light as Electromagnetic Waves � 45

2.1.5 Polarization of Light

Although in general the vector potential could have x, y, z-components, because of Eq.
2.9, the z-component of the vector potential must be zero,

∇ ·A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
= ikzAz = 0. (2.22)

This means that Az must be a constant over the entire space. Because we are interested
in electromagnetic waves, or the variation of electromagnetic fields, we can simply
set Az = 0. The waves are transverse. In other words, the intensity vectors are
perpendicular to the direction of propagation.

The direction of the vector potential could be either x or y or a linear combination
of x- and y-components. For the x-component of A, we have

Ax = Ax0e
i(kzz−ωt), Ay = 0, Az = 0. (2.23)

The electric field intensity, according to Eq. 2.8, is

Ex = iωAx0 e
i(kzz−ωt), Ey = 0, Ez = 0. (2.24)

And the magnetic field intensity, according to Eq. 2.6, is

Bx = 0, By = ikzAx0 e
i(kzz−ωt), Bz = 0. (2.25)

Therefore, the only nonvanishing components of the electric field intensity and the
magnetic field intensity are Ex and By. According to Eq. 2.21, they are in phase and
proportional,

Ex = cBy. (2.26)

Figure 2.2 Electromagnetic wave. The electromagnetic wave is transverse, where the intensity
vectors E and B are perpendicular to the direction of propagation. The electric field intensity E is
perpendicular to the magnetic field intensity B. The energy flux vector S = μ−1

0 E×B is formed from
E and B by a right-hand rule.
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46 � Nature of Solar Radiation

In summary, according to the electromagnetic theory of light, the electric field inten-
sity vector is perpendicular to the direction of the propagation of light. The magnetic
field intensity is perpendicular to both the direction of the electric field intensity vector
and the direction of the propagation of light, and its magnitude is proportional to the
electric field intensity. See Fig. 2.2.

2.1.6 Motion of an Electron in Electric and Magnetic Fields

In this section, the interaction of the radiation field—electric and magnetic fields vary-
ing with time—with the electrons is studied using classical mechanics as a preparation
for a quantum-mechanical treatment.

The standard method of developing the quantum mechanics of a dynamic system
is first to cast the classical equation of motion into Hamiltonian format. The Hamilto-
nian H(p, r) of a dynamic system is a function of its coordinate r and corresponding
momentum p, representing the total energy. For example, for an electron with charge
q moving in an electric field with potential φ(r), the Hamiltonian is

H =
1

2me
p2 + qφ(r). (2.27)

The equations of motion in the Hamiltonian format are a pair of first-order ordinary
differential equations:

ṗx = −∂H

∂x
, (2.28)

ẋ =
∂H

∂px
. (2.29)

There are similar equations for y and z. Using Eqs 2.29 and 2.27, the expression of
momentum is found to be identical to the usual definition,

p = mev = me ṙ, (2.30)

where a dot means taking a derivative with respect to time t. Applying Eqs. 2.28 and
2.29 to Eq. 2.27, one finds

mer̈ = −q∇φ(r) = qE, (2.31)

which is Newton’s equation of motion, where E is electric field intensity.
For the motion of an electron in both electric and magnetic fields, the standard

method is to insert the vector potential A into the expression of momentum by simply
substituting p with p− qA in the Hamiltonian,

H =
1

2me
(p− qA)

2
+ qφ(r), (2.32)

or

H =
1

2me

[
(px − qAx)

2 + (py − qAy)
2 + (pz − qAz)

2
]
+ qφ(x, y, z). (2.33)
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2.2 Optics of Thin Films � 47

Applying Eq. 2.29 to Eq. 2.32, one obtains

px = meẋ+ qAx (2.34)

and so on. In vector form, it is

p = me ṙ+ qA, (2.35)

which is the definition of momentum in a magnetic field. Applying Eq. 2.28 to Eq. 2.32
and using Eq. 2.35, for the x-component, yield

dpx
dt

= q

[
∂Ax

∂x
ẋ+

∂Ay

∂x
ẏ +

∂Az

∂x
ż

]
− q

∂φ

∂x
. (2.36)

The familiar Newton equation of motion, similar to Eq. 2.31, can be obtained from
Eqs. 2.33 and 2.36. The x-component is given as

meẍ =
dpx
dt

− q
dAx

dt
. (2.37)

Note that
dAx

dt
=

∂Ax

∂t
+

∂Ax

∂x
ẋ+

∂Ax

∂y
ẏ +

∂Ax

∂z
ż, (2.38)

for example, for the x-component, one obtains,

meẍ = q

[
ẏ

(
∂Ay

∂x
− ∂Ax

∂y

)
+ ż

(
∂Az

∂x
− ∂Ax

∂z

)
− ∂Ax

∂t
− ∂φ

∂x

]
. (2.39)

Using Eqs. 2.6 and 2.8, in vector form, the equation of motion is

mer̈ = qE+ qṙ× (∇×A) = qE+ qṙ×B. (2.40)

which is Newton’s equation of motion including the magnetic force. Therefore, the
correctness of the Hamiltonian, Eq. 2.32, is verified. We will use the Hamiltonian in
the quantum-mechanical treatment of the interaction of radiation with atomic systems.

2.2 Optics of Thin Films

Maxwell’s theory of light plays a critical role in the understanding of selective absorp-
tion films for solar thermal applications and antireflection films in photovoltaics. The
general theory with an arbitrary incident angle is rather complicated. However, for ap-
plications related to solar energy, it suffices to study the case of normal incidence, which
demonstrates most of the related physics. First, let us extend Maxwell’s equations to
dielectrics.
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48 � Nature of Solar Radiation

2.2.1 Relative Dielectric Constant and Refractive Index

Maxwell’s equations, Eqs. 2.1–2.4 are used for the case of a vacuum. To describe elec-
tromagnetic phenomena in a nonmagnetic medium, the electric constant ε0 is replaced
by the electric constant of the medium, ε. Maxwell’s equations are

∇ ·E =
ρ

ε
, (2.41)

∇ ·B = 0, (2.42)

∇×E = −∂B

∂t
, (2.43)

∇×B = εμ0
∂E

∂t
+ μ0 J. (2.44)

Following the procedures in Section 2.1.1, we found the wave equations for the electric
field intensity and the magnetic field intensity:

∇2E− 1

v2

∂2E

∂t2
= 0, (2.45)

∇2B− 1

v2

∂2B

∂t2
= 0, (2.46)

where the velocity v is given as

v =
1√
εμ0

. (2.47)

Table 2.2: Dielectric Constant and Refractive Index of Selected Materials

Material Wavelength εr n
Silicon 1.39 μm 12.2 3.49

Germanium 2.1 μm 16.8 4.10

TiO2 2.0 μm 5.76 2.4

SiO2 Visible 2.40 1.55

Window glass Visible 2.40 1.55

ZnS Visible 5.43 2.33

CeO2 Visible 3.81 1.953

CaF2 Visible 2.06 1.435

MgF2 Visible 1.91 1.383

Source: American Institute of Physics Handbook,

3rd Ed, McGraw-Hill, New York, 1982.
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2.2 Optics of Thin Films � 49

Comparing with Eq. 2.14, the relation of v with c is

c

v
=

√
ε

ε0
. (2.48)

Defining the relative dielectric constant of the medium as

εr ≡ ε

ε0
, (2.49)

the ratio of the speed of light in a vacuum and the speed of light in the medium, defined
as the refractive index n, is

n ≡ c

v
=

√
εr. (2.50)

In general, the relative dielectric constant and the refractive index depend on the
frequency or wavelength of the electromagnetic wave. For application in solar energy
devices, the most relevant case is solar radiation in the visible or infrared. Table 2.2
shows the relative dielectric constant and refractive index of several materials often
used in solar energy devices.

For electromagnetic waves propagating in the z direction with wavevector k and
electric field intensity in x, similar to Eqs. 2.24–2.26, the nonzero components are

Ex = E0 e
i(kz−ωt) (2.51)

By =
k

ω
E0 e

i(kz−ωt). (2.52)

The wavevector k is given as

k =
ω

v
=

ωn

c
. (2.53)

And, according to Eq. 2.50, the electric and magnetic fields are in phase and propor-
tional,

By =
1

v
Ex =

n

c
Ex. (2.54)

2.2.2 Energy Balance and Poynting Vector

Let us study the energy balance in an electromagnetic field by considering a unit volume
with relatively uniform fields. If the current density is J and the electric field intensity
is E, the ohmic energy loss per unit time per unit volume is J ·E. Using Eq. 2.44, the
expression of energy loss becomes

J ·E = − 1

μ0
E · (∇×B) + εE · ∂E

∂t
. (2.55)

Using the mathematical identity

E · (∇×B) = −∇ · (E×B) +B · (∇×E), (2.56)
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50 � Nature of Solar Radiation

Eq. 2.55 becomes

J ·E = ∇ ·
(

1

μ0
E×B

)
+

1

μ0
B · (∇×E)− εE · ∂E

∂t
. (2.57)

Using Eq. 2.43, Eq. 2.57 becomes

J ·E = −∇ ·
(

1

μ0
E×B

)
− ∂

∂t

(
ε

2
E2 +

1

2μ0
B2

)
. (2.58)

The right-hand side of Eq. 2.58 has a straightforward explanation. The energy density
of the electromagnetic fields is

W =
ε

2
E2 +

1

2μ0
B2, (2.59)

and the power density of the electromagnetic field per unit area is

S =
1

μ0
E×B. (2.60)

The vector S is called the Poynting vector after its discoverer.
For an electromagnetic wave, according to Eq. 2.54, cBy = nEx. The magnitude of

the Poynting vector along the direction of propagation is

Sz =
n

μ0c
E2

x. (2.61)

2.2.3 Fresnel Formulas

Consider two media of refractive indices n1 and n2 with an interface at z = 0, as shown
in Fig. 2.3. The incident light is moving in the z direction with wavevector kI,

kI =
ωn1

c
. (2.62)

The field intensities of the incident light are

EI = I ei(kIz−ωt), (2.63)

BI =
n1

c
I ei(kIz−ωt), (2.64)

where I is a constant characterizing the intensity of incident light.
For transmitted light, the wavevector is determined by the refractive index of

medium 2,

kT =
ωn2

c
. (2.65)

The field intensities of the transmitted light are

ET = T ei(kTz−ωt), (2.66)
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Figure 2.3 Derivation of Fresnel for-

mulas. Two media with indices of refrac-

tion n1 and n2 share an interface at z = 0.

The incident light has a wavevector kI.

The wavevector of transmitted light is kT.

The wavevector of reflected light is identi-

cal to that of incident light but with oppo-

site sign. By applying Maxwell’s equations

at the interface, the relations between the

three components of light can be derived.

BT =
n2

c
T ei(kTz−ωt), (2.67)

The constant T characterizing the intensity of the transmitted light is to be determined
by the boundary conditions required by Maxwell’s equations.

For reflected light, because it is in the same medium as the incident light, the
absolute value of the wavevector is identical to that of the incident light. However, the
direction of z is reversed. By using the same notation kI, the field intensities of the
reflected light are

ER = Rei(−kIz−ωt), (2.68)

BR = −n1

c
R ei(−kIz−ωt). (2.69)

Notice the negative sign of the magnetic field intensity BR. Again, the constant R
characterizes the intensity of the reflected light.

On the interface, z = 0, following Eqs. 2.1 and 2.2, both electric field intensity and
magnetic field intensity should be continuous. In other words,

EI + ER = ET, (2.70)

BI +BR = BT. (2.71)

Using Eqs. 2.63–2.71, we find
I −R = T, (2.72)

n1(I +R) = n2 T. (2.73)

The solutions of Eqs.2.72 and 2.73 are

R =
n2 − n1

n2 + n1
I, (2.74)

T =
2n1

n2 + n1
I. (2.75)

Equations 2.74 and 2.75 are the Fresnel formulas for the case of normal incidence. Ob-
viously, if n1 = n2, there is no reflected light, and 100% of incident light is transmitted
through the interface.
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The power densities of the incident, transmitted, and reflected light can be evaluated
using Eqs. 2.74 and 2.75 and the expression of the Poynting vector, Eq. 2.60. For
incident light, the magnitude is

SI =
1

μ0
EIBI =

n1

μ0c
I2. (2.76)

For transmitted light,

ST =
1

μ0
ET BT =

n2

μ0c
T 2. (2.77)

Using Eq. 2.74,

ST =
4n1n2

(n1 + n2)2
n1

μ0c
I2 =

4n1n2

(n1 + n2)2
SI. (2.78)

A dimensionless coefficient of transmission is defined as

T ≡ ST

SI
=

4n1n2

(n1 + n2)
2 . (2.79)

Following Eqs. 2.77 and 2.78, the intensity of reflected light can be determined, and a
dimensionless coefficient of reflection is defined as

R ≡ SR

SI
=

(
n1 − n2

n1 + n2

)2

. (2.80)

For semiconductors, the reflection loss can be significant. For example, for silicon, n =
3.49. The reflection coefficient is

R =
(1− 3.49)2

(1 + 3.49)2
≈ 0.3076. (2.81)

More than 30% of light is lost by reflection. To build high-efficiency solar cells, an
antireflection coating is essential. We will discuss this in Section 9.4.

2.3 Blackbody Radiation

It was known for centuries that a hot body emits radiation. At around 700◦C, a body
becomes red hot. At even higher temperatures, a body emits much more radiation,
and the color changes to orange, yellow, white, and even blue. In the late nineteenth
century, in order to understand phenomena related to industry technology such as steel
making and incandescent light bulbs, heat radiation became a hot subject for physicists.

Although all hot bodies emit radiation, blackbodies emit the maximum amount of
radiation at a given temperature. At equilibrium, radiation emitted must equal radia-
tion absorbed. Therefore, the body that emits the maximum amount also absorbs the
maximum amount—which should look black. Practically, a blackbody is constructed
by opening a small hole on a large cavity, as shown in Fig. 2.4. Any light ray passing
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through the hole with area A experiences multiple reflections on the internal surface of
the cavity. If the material is not absolutely shiny, after several impingements, the light
will eventually be completely absorbed by the cavity. Therefore, the small hole on the
large cavity always looks black, which is a good example of a blackbody.

2.3.1 Rayleigh–Jeans Law

The energy density of radiation as a function of its frequency was studied in the late
nineteenth century by Lord Rayleigh and then by Sir James Jeans using classical sta-
tistical physics. They treated standing electromagnetic waves in a cavity as individual
modes, and the modes follow the equal-partition law of Maxwell–Boltzmann statistics.

Consider a closed cubic cavity with reflective inner surfaces of side L. A sinusoidal
electromagnetic wave with frequency ν satisfies the following equation:

∇2A+
4π2ν2

c2
A = 0. (2.82)

Assuming that the cavity is made of metal. On the walls of the cavity, electrical
field intensity vanishes. Therefore, the vector potential vanishes. The general solution
of Eq. 2.82 satisfying that condition is

A = A0 sin(kxx) sin(kyy) sin(kzz). (2.83)

The wavevectors are defined by

Figure 2.4 Blackbody radiation. A large cavity with a small hole is a good blackbody. The
light enters the hole will experience multiple reflections, and all be absorbed and thus looks black. A
blackbody emits maximum amount of radiation when heated.
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kx =
π nx

L
, ky =

π ny

L
, kz =

π nz

L
, (2.84)

where nx, ny, and nz are positive integers. By direct substitution one finds that the
solution, Eq. 2.83, satisfies differential equation 2.82 and the boundary conditions at
the walls. Each set of the integers, nx, ny, nz, represents a pattern of electromagnetic
wave in the cavity. Inserting Eq. 2.84 into Eq. 2.82 yields

k2x + k2y + k2z =
4π2ν2

c2
, (2.85)

and in terms of the numbers nx, ny, and nz, Eq. 2.85 becomes

n2
x + n2

y + n2
z =

4ν2L2

c2
. (2.86)

Now, we count the number of standing waves with frequencies ν by considering

a sphere of radius
√
n2
x + n2

y + n2
z = 2νL/c. The number N of modes with positive

nx, ny, and nz up to ν is

N =
1

8

4

3
π

(
2νL

c

)3

=
4πν3 L3

3c3
, (2.87)

For each type of standing wave, there are two polarizations. Therefore, the number of
modes of standing electromagnetic waves is

N =
8πν3 L3

3c3
, (2.88)

where L3 is the volume, and the density of states at frequency ν is

d

dν

(
N

L3

)
=

8πν2

c3
. (2.89)

According to Maxwell–Boltzmann statistics, at absolute temperature T , each degree
of freedom contributes energy kBT , where kB is the Boltzmann constant, and the energy
density is

ρ(ν, T ) =
d

dν

(
N

L3

)
kBT =

8πν2

c3
kBT. (2.90)

Equation 2.90 is the energy density of radiation per unit frequency interval in a
cavity of temperature T . It is not directly observable. The directly observable quantity
is the spectral radiance u(ν, T ), that is, the energy radiating from a unit area of the
hole per unit frequency range. To calculate u(ν, T ) from ρ(ν, T ), first we consider a
simplified situation: If the field has a well-defined direction of radiation with velocity
c, we have

u(ν, T ) = c ρ(ν, T ). (2.91)

Chen, C. J. (2011). Physics of solar energy. ProQuest Ebook Central <a onclick=window.open('http://ebookcentral.proquest.com','_blank')
         href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from inflibnet-ebooks on 2021-08-09 05:56:01.

C
op

yr
ig

ht
 ©

 2
01

1.
 J

oh
n 

W
ile

y 
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll 
rig

ht
s 

re
se

rv
ed

.



�

�

“ChenSolarEnergy” — 2011/5/17 — 17:56 — page 55 — #82
�

�

�

�

�

�

2.3 Blackbody Radiation � 55

Because the hole is small, the radiation field in a cavity is isotropic. As the radiation
only comes through a hole of well-defined direction, u(ν, T ) should be a fraction of
cρ(ν, T ). The value of the fraction can be determined using the following argument.
Consider a sphere of radius R. The surface area of the sphere is 4πR2. If the radiation
inside the sphere is allowed to emit over all directions, the area is 4πR2. If the radiation
is allowed to emit in only one direction, the area is a disc with radius R, that is, πR2.
Consequently, the factor is 1/4. Equation 2.91 becomes

u(ν, T ) =
1

4
cρ(ν, T ). (2.92)

Following is a more detailed proof of the factor 1/4. Consider the radiation from a
small hole of area A on the cavity; see Fig. 2.4. Because the electromagnetic wave is
isotropic and the speed of light is c, the energy radiated through a solid angle dΩ at
an angle θ is

dE

dt dΩ
=

c

4π
ρ(ν, T )A cos θ (2.93)

because the area of the hole observed from an angle θ is A cos θ. Integrating over the
hemisphere, the total irradiation per unit area is

u(ν, T ) =
c

4π

∫ π/2

0

2π cos θ sin θ dθ ρ(ν, T ) =
c

4
ρ(ν, T ), (2.94)

confirming Eq. 2.92. Using Eq. 2.90, we finally obtain the Rayleigh–Jeans distribution
of blackbody radiation,

u(ν, T ) =
2πν2

c2
kBT. (2.95)

The Rayleigh–Jeans distribution fits the low-frequency behavior of the experimental
energy density very well. However, as the frequency increases, the spectral irradiance
increases, the total irradiation energy is infinite. This contradicts the experimental fact
that the total blackbody radiation is finite, and the spectral density has a maximum;
see Fig. 2.5.

2.3.2 Planck Formula and Stefan–Boltzmann’s Law

In 1900, Max Planck found an empirical formula that fits accurately the experimental
data,

u(ν, T ) =
2πν2

c2
hν

ehν/kBT − 1
. (2.96)

The constant h in the formula, Planck’s constant, was initially obtained by fitting
with experimental blackbody radiation data. Later, Planck found a mathematical
explanation of his formula by assuming that the energy of radiation can only take
discrete values. Specifically, he assumed that the energy of radiation with frequency ν
can only take integer multiples of a basic value hν, the energy quantum,
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ε = 0, hν, 2hν, 3hν, .... (2.97)

According to Maxwell–Boltzmann statistics, the probability of finding a state with
energy nhν is exp(−nhν/kBT ). The average value of energy of a given component of
radiation with frequency ν is

ε̄ =

∞∑
n=0

nhν e−nhν/kBT

∞∑
n=0

e−nhν/kBT

=
hν

ehν/kBT − 1
. (2.98)

instead of kBT . By replacing the expression kBT in Eq. 2.90 with Eq. 2.98, we
recovered Eq. 2.96.

Initially, Max Planck believed that the quantization of energy is only a mathemat-
ical trick to reconcile his empirically obtained formula with the knowledge of physics
known at that time. The profound significance of the concept of quantization of radi-
ation and the meaning of Planck’s constant were discovered by Albert Einstein in his
interpretation of the photoelectric effect, which is the conceptual foundation of solar
cells.

By integrating the spectral radiance over frequency, the total radiation is found to
be

U(T ) =

∫ ∞

0

2πhν3

c2
dν

ehν/kBT − 1

=
2πh

c2

(
kBT

h

)4 ∫ ∞

0

x3 dx

ex − 1

=
2

15

π5k4B
c2 h3

T 4.

(2.99)

Here a mathematical identity is applied,∫ ∞

0

x3 dx

ex − 1
=

π4

15
. (2.100)

Equation 2.99 is Stefan–Boltzmann’s law, discovered experimentally before the Planck
formula and backed by an argument using thermodynamics. The constant in Eq. 2.99,

σ ≡ 2

15

π5k4B
c2h3

=
π2k4B
60 c2�3

= 5.67× 10−8 W

m2 ·K4
, (2.101)

is called the Stefan–Boltzmann’s constant. It can be memorized using the mnemonic:
45678. The total radiance is proportional to the fourth power of absolute temperature,
and the coefficient is 5.67 times the inverse eighth power of 10.
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For applications in solar cells, the electron volt is the most convenient unit of photon
energy; see Fig. 2.5. The Planck formula for blackbody spectral irradiance in terms of
photon energy ε in units of electron volts is

u(ε, T ) =
2πq4

c2 h3

ε3

eε/εT − 1
= 1.587× 108

ε3

eε/εT − 1

W

m2 · eV , (2.102)

where εT = kBT/q is the value of kBT in electron volts. Numerically, it equals εT =
T/11, 600. For the Sun, T�=5800 K; thus ε� =0.5 eV. At the location of Earth, the
radiation is diluted by the distance from the Sun to Earth, the astronomical constant
A� = 1.5×1011 m. Introducing a geometric factor f representing the solid angle of the
Sun with radius r� = 6.96× 108m as observed from Earth

f =

(
r�
A�

)2

=

[
6.96× 108

]2
[1.5× 1011]

2 = 2.15× 10−5, (2.103)

the spectrum of the AM0 solar radiation (outside the atmosphere at the location of
Earth) is

u⊕(ε, T ) = fu�(ε, T ) = 3.41× 103
ε3

eε/ε� − 1

W

m2 · eV . (2.104)

Figure 2.5 Blackbody spectral irradiance. The blackbody spectral irradiance, or the radiation
power emitted per square meter per unit energy interval (here in electron volts) at an energy value
(also in electron volts) at four different temperatures ise shown. The maximum of solar irradiance is
at 1.4 eV, with a value of 27.77 MW/m2·eV. The temperature of the filament of an incandescent light
is about 3000 K. The radiation power density at the filament surface is only about 7% that on the
Sun. The spectral irradiance from a blackbody at the boiling points of water and the human body are
also shown, in units of kW/m2·eV.

Chen, C. J. (2011). Physics of solar energy. ProQuest Ebook Central <a onclick=window.open('http://ebookcentral.proquest.com','_blank')
         href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from inflibnet-ebooks on 2021-08-09 05:56:01.

C
op

yr
ig

ht
 ©

 2
01

1.
 J

oh
n 

W
ile

y 
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll 
rig

ht
s 

re
se

rv
ed

.



�

�

“ChenSolarEnergy” — 2011/5/17 — 17:56 — page 58 — #85
�

�

�

�

�

�

58 � Nature of Solar Radiation

Table 2.3: Blackbody Radiation at Different Temperatures

Radiator Temperature Power Peak ε Peak λ Peak u

(K) (W/m2) (eV) (μm) (W/m2·eV)

The Sun 5800 6.31× 107 1.410 0.88 2.81 ×107

Light bulb 3000 4.59× 106 0.728 1.70 3.88× 106

Boiling water 373 1.10× 103 0.091 13.6 7.46× 103

Human body 310 5.24× 102 0.075 16.5 4.28× 103

The position of the peak in blackbody spectral irradiance can be of a transcendental
equation

d

dx
[3 log x− log (ex − 1)] = 0, (2.105)

and can be obtained by numerical computation,

x = 2.82. (2.106)

In other words, the peak of blackbody spectral irradiance is at

εMAX = 2.82 εT = 2.43× 10−4 T (eV). (2.107)

The peak value for the function x3/(ex − 1) is 1.42. Therefore, the peak value of the
spectral irradiance is

uMAX = 1.42
2πqk3B
c2 h3

T 3 ∼= 1.44× 10−4 T 3 W

m2 · eV . (2.108)

Table 2.3 lists the data for some frequently encountered cases.

2.4 Photoelectric Effect and Concept of Photons

The photoelectric effect was discovered accidentally by Heinrich Hertz in 1887 during
experiments to generate electromagnetic waves. Since then, a number of studies have
been conducted in an attempt to understand the phenomena. Around 1900, Phillip
Lenard did a series of critical studies on the relation of the kinetic energy of ejected
electrons with the intensity and wavelength of the impinging light [50]. His results were
in direct conflict with the wave theory of light and inspired Albert Einstein to develop
his theory of photons.

Figure 2.6 shows schematically the experimental apparatus of Phillip Lenard. The
entire setup was enclosed in a vacuum chamber. An electric arc lamp, using carbon
rods or zinc rods as the electrodes, generates strong UV light. A quartz window allows
such UV light to shine on a target made of different metals. The target and a counter
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electrode are connected to an adjustable power supply. An ammeter is used to measure
the electric current generated by the UV light, the photocurrent, especially when the
voltages between the two electrodes are very small. By gradually increasing the voltage,
which tends to reflect the electrons back to the target, the photocurrent is reduced. The
voltage with which the photocurrent becomes zero is recorded as the stopping voltage.

The stopping voltage is apparently related to the kinetic energy of the electrons
ejected from the target:

qV =
1

2
mv2. (2.109)

Understandably, the photocurrent varies with the intensity of light. By changing
the magnitude of the current that drives the arc or the distance from the arc lamp to
the target, the photocurrent could change by two orders of magnitude: for example,
from 4.1 to 276 pA. An unexpected and dramatic effect Lenard observed was that no
matter how strong or how weak the light is, and no matter how large or how small
the photocurrent is, the stopping voltage does not change; see Table 2.4. The stopping
voltage changes only when the material for the electric arc lamp changes. However, for
a given type of arc, the stopping voltage stays unchanged.

The effect Lenard observed has no explanation in the framework of the wave theory
of light. According to the wave theory of light, the more intense the light is, the more
kinetic energy the electrons acquire.

Figure 2.6 Lenard’s apparatus for studying photoelectric effect. A quartz window allows
the UV light from an electric arc lamp to shine on a target. The voltage between the target and
the counter electrode is controlled by an adjustable power supply. An ammeter is used to measure
the electric current generated by the UV light, the photocurrent. By gradually increasing the voltage
(with the polarity as shown), the photocurrent is reduced. The voltage with which the photocurrent
becomes zero is recorded as the stopping voltage [50].
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Table 2.4: Stopping Voltage for Photocurrent

Rod Driving Distance Photocurrent Stopping

material current (A) to target (cm) (pA) voltage (V)

Carbon 28 33.6 276 -1.07

Carbon 20 33.6 174 -1.12

Carbon 28 68 31.7 -1.10

Carbon 8 33.6 4.1 -1.06

Zinc 27 33.6 2180 -0.85

Zinc 27 87.9 319 -0.86

Source: P. Lenard, Annalen der Physik , 8, 167 (1902) [50].

2.4.1 Einstein’s Theory of Photons

In 1905, while employed as a patent examiner at the Swiss Patent Office, Albert Einstein
wrote five papers, published in Annalen der Physik, that initiated the twentieth century
revolution in science. For general public, Einstein is mostly known for his theory of
relativity. Therefore, when the Swedish Academy announced in 1922 that Einstein
had won the Nobel Prize “for services to theoretical physics and especially for the
discovery of the law of the photoelectric effect,” referring to his paper On a Heuristic
Viewpoint Concerning the Production and Transformation of Light [27], the public was
surprised. In hindsight, the Nobel Committee was correct: His paper on photoelectric
effect is considered the boldest, the most revolutionary, and the most original. Although
its predictions were fully verified by experiments, for many years, several prominent
physicists did not accept Einstein’s concept of photons. Here is a quote from Einstein
[27]:

According to the assumption considered here, when a light ray starting from
a point is propagated, the energy is not continuously distributed over an
ever increasing volume, but it consists of a finite number of energy quanta,
localized in space, which move without being divided and which can be
absorbed or emitted only as a whole.

According to Einstein, light, when it interacts with matter, appears as a flow of
individual and indivisible particles. When a photon interacts with an electron, either
it is absorbed or there is no interaction. The energy value of a photon, ε, depends on
its frequency,

ε = hν, (2.110)

where h = 6.63 × 10−34 J · s is Planck’s constant and ν is the frequency of light. For
example, for green light, λ = 0.53μm, and the frequency is 5.6× 1014 s−1. The energy
of the photon is 3.7× 10−19J, or 2.3 eV.
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When a photon interacts with an electron in the metal, it transfers the entire energy
to the electron. The electron could escape from the metal by overcoming the work
function φ of the metal, typically a few electron volts. If the energy of the photon
is smaller than the work function of the metal, the electron would stay in the metal.
If the energy of the photon is greater than the work function of the metal, then the
electron can escape from the metal surface with an excess kinetic energy,

1

2
mv2 = hν − φ. (2.111)

The kinetic energy of an escaping electron can be measured by an external voltage,
or electric field, to turn it back onto the target. Voltage that just is enough to cancel
the kinetic energy is called the stopping voltage,

q Vstop =
1

2
mv2 = hν − φ, (2.112)

where q is the electron charge, 1.60×10−19 C. According to Einstein’s quantum theory
of light, the stopping voltage is linearly dependent on the frequency of the photon and
independent of the intensity of light. The slope should be a universal constant, which
provides a direct method to determine the value of Planck’s constant,

ΔVstop

Δν
=

h

q
. (2.113)

2.4.2 Millikan’s Experimental Verification

Einstein’s theory of photons was rejected by a number of prominent physicists for
many years, including Max Planck, Niels Bohr, and notably Robert Millikan. Starting
in 1905, for 10 years Millikan worked to disprove Einstein’s theory. Finally, in 1916,
Millikan published a long paper on Physical Review, entitled A Direct Photoelectric
Determination of Planck’s h [61]. The conclusion reads as follows:

1. Einstein’s photoelectric equation has been subject to very searching tests
and it appears in every case to predict exactly the observed results.

2. Planck’s h has been photoelectrically determined with a precision of
about .5 percent.

In 1923, Millikan received a Nobel Prize “for his work on the elementary charge of
electricity and on the photoelectric effect.”

An interesting fact in the history of science is that in the same paper Millikan
emphatically rejected Einstein’s theory of photons. He said that Einstein’s photon hy-
pothesis “may well be called reckless first because an electromagnetic disturbance which
remains localized in space seems a violation of the very conception of an electromagnetic
disturbance, and second because it flies in the face of the thoroughly established facts
of interference.” Millikan wrote that Einstein’s photoelectric equation, although accu-
rately representing the experimental data, “cannot in my judgment be looked upon at
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62 � Nature of Solar Radiation

Figure 2.7 Albert Einstein and Robert Millikan. Both Einstein and Millikan won a Nobel Prize
for their contributions to the photoelectric effect. Photograph taken in 1930 when Robert Millikan
invited Albert Einstein to a conference in California. Original photograph courtesy of Smithsonian
Museum, slightly cleaned up by the author.

present as resting upon any sort of a satisfactory theoretical foundation [61].” In 1950,
at age 82, in his autobiography [62], Millikan reversed his position and admitted that
his experiments

proved simply and irrefutably, I thought, that the emitted electron that
escapes with the energy hν gets that energy by the direct transfer of hν
units of energy from the light to the electron, and hence scarcely permits of
any other interpretation than that which Einstein had originally suggested,
namely that of the semi-corpuscular or photon theory of light itself.

2.4.3 Wave–Particle Duality

The earlier objections to Einstein’s theory of photons was related to an even more
profound problem: the wave–particle duality of all particles. At the beginning of the
twentieth century, electrons were described by classical mechanics as being similar to
billiard balls. Einstein’s theory seemed to imply that photons are also like billiard balls
and that the photoelectric effect is a collision of the billiard balls with electrons. Such a
picture is not only hard to conceive but also in direct conflict with the well-established
interference phenomenon of light.

The paradox was resolved after Louis de Broglie extended Einstein’s postulate that
light can be both wave and particle to all particles, including the electron. According
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2.5 Einstein’s Derivation of Blackbody Formula � 63

to de Broglie, a particle with a momentum p should also be a plane wave with a
wavevector k such that

p = �k, (2.114)

where � = h/2π, Planck’s constant divided by 2π, is often called Dirac’s constant.
According to the theory of de Broglie, a better picture of the photoelectric effect is
that light radiation as a plane wave interacts with the electron in the electrode, which
is also a plane wave, but the energy transferred to the electron must be quantized to
satisfy the Einstein equation

ε = hν ≡ �ω, (2.115)

where ω = 2πν is the circular frequency of the light wave. This is an essential concept
regarding the understanding of solar cells and solar photochemistry, which we will
discuss in the corresponding chapters.

2.5 Einstein’s Derivation of Blackbody Formula

Based on the concept of photons and the interaction of photons with matter, Einstein
made a very simple derivation of the blackbody radiation formula. The key of his
derivation is the introduction of stimulated emission, which gave birth to the laser,
an acronym for light amplification by stimulated emission of radiation, and provides a
better understanding of the interaction between solar radiation and atomic systems.

Einstein studied a simple two-state atomic system; see Fig. 2.8. The radiation
field is represented by an energy density ρ(ν), where ν is the frequency. The atomic
system has two states with an energy difference hν. According to Maxwell–Boltzmann
statistics, the ratio of the populations of the two states is

N2

N1
= e−hν/kBT . (2.116)

Einstein assumed three transition coefficients: the absorption coefficient B12, the
spontaneous emission coefficient A, and the stimulated emission coefficient B21. The
rate equations are

dN2

dt
= B12N1ρ(ν)−B21N2ρ(ν)−AN2, (2.117)

dN1

dt
= −B12N1ρ(ν) +B21N2ρ(ν) +AN2. (2.118)

At equilibrium, both dN1/dt and dN2/dt should vanish. Therefore,

N2

N1
=

B12ρ(ν)

A+B21ρ(ν)
= e−hν/kBT . (2.119)

The coefficients should not depend on temperature. At high temperature, the power
density should be high, and the right-hand side of Eq. 2.119 should approach unity.
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64 � Nature of Solar Radiation

Figure 2.8 Einstein’s derivation of blackbody

radiation formula. The radiation field ρ(ν) inter-

acts with a two-level atomic system. Three inter-

action modes are assumed: absorption, to lift the

atomic system from state 1 to state 2; spontaneous

emission and stimulated emission, the atomic system

decays from state 2 to state 1, giving out energy to

the radiation field.

Therefore, one must have
B12 = B21 = B. (2.120)

The absorption coefficient B12 equals the stimulated emission coefficient B21, which can
be represented by a single coefficient B. Under any temperature, the power density
distribution of radiation is then

ρ(ν) =
A

B

1

ehν/kBT − 1
. (2.121)

For radiations of low photon energy, Eq. 2.121 reduces to

ρ(ν) → A

B

kBT

hν
. (2.122)

It should be identical to the Rayleigh–Jeans formula. Comparing with Eq. 2.90, we
find the ratio of coefficients A and B,

A

B
=

8πhν3

c3
. (2.123)

Finally, Planck’s formula is recovered,

ρ(ν) =
8πhν3

c3
1

ehν/kBT − 1
. (2.124)
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Problems

2.1. Show that the capacitance C of a parallel-plate capacitor with vacuum as the
dielectric is

C =
ε0A

d
[F], (2.125)

where A is the area and d is the distance between the electrodes.

2.2. Show that the capacitance C of a parallel-plate capacitor with a medium of relative
dielectric constant εr is

C =
ε0εrA

d
[F]. (2.126)

Calculate the capacitance of a capacitor with A = 1m2 and s = 1mm for glass and
silicon.

2.3. Show that the inductance L of an inductor made of a long solenoid of N loops
with cross-sectional area A and length l is

L =
μ0N

2A

l
[H]. (2.127)

2.4. Show that the speed of light v in a medium of relative dielectric constant εr is

v =
c√
εr

. (2.128)

Calculate the speed of light v in glass and silicon (the relative dielectric constants εr
for glass and silicon are 2.25 and 11.7, respectively).

2.5. The refractive index of window glass is n = 1.50. How much light power is lost
when going through a sheet of glass at normal incidence? (Hint : there are two glass–air
interfaces.)

2.6. The radius of the Sun is R = 6.96× 108 m, and the distance between the Sun and
Earth is D = 1.5 × 1011 m. The solar constant is 1366 W/m2. Estimate the surface
temperature of the Sun. (Hint : use the Stefan–Boltzmann law.)

2.7. What is the magnitude of the electric field intensity of the sunlight just outside
the atmosphere of Earth?

2.8. What is the electric field intensity of the electron in a hydrogen atom at the
distance of one Bohr radius from the proton?

2.9. Derive the blackbody radiation spectral density per unit wavelength in unit of
micrometers.

2.10. Using the blackbody radiation formula per unit wavelength, derive the Wien
displacement law in micrometers.

Problems � 65
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66 � Nature of Solar Radiation

Figure 2.9 Wavelengths of visible lights.

2.11. The wavelengths of visible light with different colors in nanometers are shown
in Fig. 2.9. Compute the frequencies and energy values of the photons, in both joules
and electron volts.

2.12. What is the solar constant of Venus? Assume that the Sun is a blackbody emitter
at 5800 K and the mean Venus-Sun distance is 1.08× 1011 m.

2.13. To compute the blackbody irradiation for photon energy from ε0 to infinity, an
easy-to-use formula can be obtained by introducing x0 = ε0/kBT and expanding the
denominator of Eq. 2.99 into

U(T, ε0) =
2π(kBT )

4

c2 h3

∫ ∞

x0

e−x x3 dx

1− e−x

=
2π(kBT )

4

c2 h3

∞∑
n=1

∫ ∞

x0

e−nx x3 dx.

(2.129)

Prove that

U(T, ε0) =
2π(kBT )

4

c2 h3

∞∑
n=1

e−nx0

[
x3
0

n
+

3x2
0

n2
+

6x0

n3
+

6

n4

]
, (2.130)

with
x0 =

ε0
kBT

. (2.131)

2.14. Assuming that the Sun is a blackbody emitter at 5800 K, what fraction of solar
radiation is green (wavelength between 495 and 570 nm)?

2.15. Assuming that the Sun is a blackbody emitter at 5800 K, what fraction of solar
radiation has photon energy greater than 1.1 eV?
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